
Solution of Algebra III Mid-sem 2009

August 24, 2016

Question 1: Find all automorphisms of Z[X]. Conclude that given a fixed integer c, every element of
Z[X] can be written uniquely as a polynomial in X − c with integer coefficients.

Solution: Since X is the generator of Z[X], for any automorphism f of Z[X], f(X) will also be a generator.
Therefore f(X) must be a linear polynomial of the form aX + b, a, b are integers. Since f is surjective
we have

X = cf(X) + d = acX + bc+ d

so we have ac = 1, hence a = 1 or −1. Therefore f(X) = X + b or −X + b = −(X − b). From this we
conclude that any polynomial can be written uniquely as a polynomial in X − c, for any integer c.

Question 2: Let I, J be ideals in R such that I + J = R.

Prove that : a) I ∩ J = IJ . b) R/IJ is isomorphic to R/I × R/J . Find the idempotents of R/IJ
corresponding to this decomposition.

Solution: By definition IJ is contained in I ∩ J . Let a belong to I ∩ J . Since I + J = R, there exists
b, c in I, J respectively such that b + c = 1. Then we have a = ab + ac, which is in IJ . So we get that
I ∩ J = IJ .

Define the homomorphism φ from R/IJ to R/I ×R/J , by the following rule

φ(a+ IJ) = (a+ I, a+ J) .

It is easy to check that it is a well defined homomorphism. Suppose that φ(a+ IJ) = 0, that means that
a belongs to I ∩ J . Since I ∩ J = IJ , we have a belongs to IJ . So φ is injective. Now we have to prove
that φ is surjective. So let us take (b + I, c + J) in R/I × R/J . We need to produce a ∈ R such that
a + I = b + I, a + J = c + J . That is we need a such that a − b belongs to I and a − c belongs to J .
Consider x, y in R such that x+ y = 1. Then φ(x+ IJ) = (0, 1 + J) and φ(y + IJ) = (1 + I, 0). Then

φ(cx+ by + IJ) = (cx+ by + I, cx+ by + J) = (c+ I, c+ J)(0, 1 + J) + (b+ I, b+ J)(1 + I, 0)

that is equal to
(b+ I, c+ J) .

So φ is an isomorphism.

Idempotents of R/IJ corresponds to idempotents in R/I ×R/J by this isomorphism.

Question 3: a) Show that an ideal P is a prime ideal in R if and only if R/P is an integral domain.

b) Let f : R → D be a ring homomorphism into an integral domain D. Given two ideals in D, let I, J
be their inverse images under f . Suppose that the product IJ is contained in ker(f). Then prove that
I or J is equal to ker(f). Is it necessary that IJ equals to ker(f).
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Solution

a) Let P be a prime ideal. To prove that R/P is an integral domain. So let a + P.b + P = 0 = ab + P ,
that means ab belongs to P , since P is prime we have that a ∈ P or b ∈ P . So a+ P = 0 or b+ P = 0.

Suppose that R/P is an integral domain. Let ab belongs to P . Then we have ab+P = (a+P )(b+P ) = 0,
which shows that a ∈ P or b ∈ P . So P is prime.

b) Since D is an integral domain, we observe that ker(f) is a prime ideal. Suppose that IJ is contained
in ker(f). Suppose also that I and J both are not contained in ker(f). So there exists a, b in I, J which
are not in ker(f) such that ab belongs to ker(f). This contradicts that ker(f) is prime. So either I or
J is contained in ker(f). On the other hand ker(f) is contained in I, J (Since {0} is contained in their
images under f). If IJ = Ker(f) = I, then I is contained in I ∩ J , meaning that I ⊂ J , which may not
be true.

Question 4: For an element R in the ring R, consider the ideal (rX − 1) in R[X]. Consider the natural
homomorphism Φ : R→ S = R[X]/I.

a)Show that ker(Φ) is
{a : rna = 0, n ∈ N} .

b)Conclude that S = 0 if and only if r is nilpotent in R.

c)Show that Φ is an isomorphism if and only if r is a unit in R.

Solution:a) First we prove that the ring S = R[X]/I, is the ring Rr, that is R localized at r. So define a
homomorphism Ψ : S → Rr, given by

f 7→ f(1/r) .

Since in the ring S we have x = 1/r, the map well defined homomorphism. It is easily seen to be a
surjection. We have to prove that Ψ is an injection. So suppose that f(1/r) = 0, that means that

a0 + a1(1/r) + · · ·+ an(1/r)n = 0

which gives us that
rna0 + rn−1a1 + · · ·+ an/r

n = 0

that is by definition we have
rs(rna0 + rn−1a1 + · · ·+ an) = 0

which gives us that ai = 0 for all i. Therefore it will follow that Φ(a) = 0, means that a/1 = 0 in the
localization Rr. Which by definition is equivalent to rna = 0, for some n ∈ N.

b) We have to prove that S = 0 if r is a nilpotent in R. Suppose that r is a nilpotent. That is rn = 0 for
some n. Then any a/rm can be written as rna/rm+n. But rn = 0, so we have a/rm = 0.

On the other hand suppose that S = 0. Then 1/rn = 0 in S, which means that there exists m such that
rm = 0. So r is a nilpotent.

c) The map Φ is an isomorphism means that a/ 7→ a/1 is an isomorphism. Suppose that r is a unit.
Suppose that a/1 = 0, meaning that there exists m such that rma = 0. Since r is a unit we have that rm

a unit hence a = 0. So the map is an injection. Let us consider an element a/rn, then it there is ar−n

which maps to this element. Hence the map is surjective, hence an isomorphism.

Suppose that Φ is an isomorphism. We have to prove that r is a unit. Let a/1 = 1/r, which gives us that
there exists n such that

rn(ra− 1) = 0
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this implies that ra− 1 = 0 (because it is in the kernel of Φ), so we have that ra = 1.

Question 5: Let M be a proper ideal in R.

a) Show that the statement ”All elements in R−M are units” is equivalent to the statement ”M is the
unique maximal ideal in R”.

b) Using the knowledge about units in the power series ring Q[[X]], state why the equivalent conditions
holds for this ring.

c) Show that there is a unique homomorphism Q[[X]]→ Q. Is this statement holds for an arbitrary field
F .

Solution: a) Let M be the unique maximal ideal in R. Let a belong to R−M . Then the ideal generated
by a must be contained in a maximal ideal if it is not a unit. But there is only maximal ideal M which
does not contain a. So the ideal generated by a is R. Hence a a unit.

On the other hand suppose that there exists M1 a maximal ideal which is not equal to M . Then there
exists a in M1 −M . Since all elements of R −M is a unit, a must be a unit. So we have that M1 = R.
Hence M is unique.

b)the ideal generated by x is the unique maximal ideal because any power series which has a non-zero
constant term is a unit. So the above conditions hold in the case of Q[[X]].

c) Any homomorphism f from Q[[X]] to Q is identity on Q. So it is surjective. The inverse image of the
zero ideal in Q, under f is maximal (this is because inverse image of a maximal ideal under a surjective
homomorphism is a maximal ideal). Since the ideal generated by X is the only maximal ideal in Q[[X]],
we have that ker(f) is equal to the ideal generated by X. So we have that the homomorphism f is unique
and determined by the ideal < X >. Here we used the divisibility property of Q, that is for any integer
n we have that n.1/n = 1, which may not hold for arbitrary field F .

Question: a) Let R be a PID and S a UFD, with R contained in S. Let d be the gcd of a, b in R, where
a, b are non-zero non-units. Show that d is also the gcd of a, b in S.

b) Find a gcd of 11 + 7i and 18− i in the ring of Gaussian integers Z[i].

Solution: Since S is a UFD, we have that the factorization of a, b remain unique in R,S. Therefore the
gcd remain unique.

We describe the general procedure for finding the GCD of two Gaussian integers. Let us have α =
a+ ib, β = c+ id two numbers. Then consider a+ ib/c+ id = α/β = r+ is, where r = ac+ bd/c2 +d2, s =
ad − bc/c2 + d2. Find p, q integers in Z such that |r − p|, |q − p| are less than or equal to 1/2. Put
θ = (r − p) + i(s− q) and set γ = βθ, then we get that

α = β(p+ iq) + γ

since N(θ) is less than or equal to 1/2 we have that N(γ) is less or equal to N(β)/2. Continue this
process until N(γ) = 0.

Question: Given two polynomials f, g in C[X,Y ] let I = (f, g), the ideal generated by f, g. Prove that
C[X,Y ]/I is a finite dimensional vector space if and only if the GCD (f, g) = 1.

Solution First we prove that if the variety defined by f = g = 0 has finitely many points then GCD of
f, g is 1 and vice versa.
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Suppose that the gcd is 1. Then the varieties defined by zero locus of f, g must intersect at finitely many
points. Otherwise gcd will not be 1.

Now suppose that we have f = 0 intersect g = 0 at finitely many points. Then let gcd be d which is
a polynomial of degree greater or equal than 1. Then we have d = 0 is contained in the intersection
f = g = 0, which is impossible since d = 0 defines a curve.

Now we prove that the variety f = g = 0 has finitely many points is equivalent to the fact that dimension
of C[X,Y ]/I is finite.

Suppose that f = g = 0 has finitely many points P1, · · · , Pn. Then by Chinese remainder theorem we
have that

C[X,Y ]/I ∼=
∏
i

C[X,Y ]/I(Pi)

the right hand side is finite dimensional so we have C[X,Y ]/I is finite dimensional.

Suppose that C[X,Y ]/I is of finite dimension. Then it is Artinian as a ring hence has Krull dimension
zero, so we get that f = g = 0 consists of finitely many points.

Question 8: Let R be a commutative ring. Describe the kernel of the map φ : R[X,Y ]→ R[T ] such that
φ is identity on R, φ(X) = T p, φ(Y ) = T q. p, q are relative prime positive integers.

Solution Suppose that φ(f) = 0, that is f(X,Y ) =
∑

i,j aijX
iY j is mapped to zero under φ. That is∑

i,j

aijT
pi+qj = 0 .

Already we have Xq − Y p is in the kernel. We prove that it generates the kernel. So let f belong to the
kernel, then we have

φ(f) = 0 =
∑
i

aiT
pi +

∑
bjT

qj +
∑
kl

cklX
kY l

the above implies that ckl = 0 and ai = bj = 0 except for pi = qj = m and in this case we have ai = −bj .
Then we have that f is a linear combination of polynomials of the form Xqk−Y pk, which are in the ideal
generated by Xq − Y p.

Question: a) An element r in a ring R of characteristic 5 satisfies r999 = 0, then find n > 0 such that
(1 + r)n = 1.

Solution: Take n = 1000 = 103, since the ring is of characteristic 5 we have (1 + r)10
3

= 1 + r10
3

= 1,
since r1000 = 0.

Question: b) Let F be the two element ring. Find a reducible polynomial in F [X] of smallest possible
degree, which has no roots in F .

Solution: Take the polynomial to be (X2 +X + 1)2.

Question: c) Find all monic polynomials g(X) in Q[X] such that when f is irreducible then so is f(g(x)).

Solution: It implies that g(X) is irreducible and g(X) − q is irreducible for all q rational. In particular
we can choose q = am, where am is the constant term in g(X). But g(X) − am is Xg1(X), so it is not
irreducible. So there does not exists any such polynomial with non-zero constant terms. So g has am = 0
also g(X) is irreducible. That gives us that g(X) = X.

Question: Show that upto isomorphism there are exactly 4 rings of cardinality 4. What about rings of
cardinality 9?
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Solution:

In a ring of order 4, we have 4.1 = 0, so the characteristic is either 2 or 4. So for all element either 2a = 0
or 4a = 0. If 2a = 0, then the ring is Z2 × Z2 otherwise it is Z4. Now on each of then there are two
ring operation, one is the natural one and the other one is trivial, i.e (a, b)(c, d) = (ab, cd) or is equal to
0 for Z2 × Z2. For Z4 we have the natural ring operation and the trivial one. So there are four rings of
cardinality 4.

Same for rings of cardinality 9, either Z3 × Z3 or Z9, and each having two ring operations.
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