Solution of Algebra III Mid-sem 2009

August 24, 2016

Question 1: Find all automorphisms of Z[X]. Conclude that given a fixed integer ¢, every element of
Z[X] can be written uniquely as a polynomial in X — ¢ with integer coefficients.

Solution: Since X is the generator of Z[X], for any automorphism f of Z[X], f(X) will also be a generator.
Therefore f(X) must be a linear polynomial of the form aX + b, a,b are integers. Since f is surjective
we have

X=cf(X)+d=acX +bc+d
so we have ac = 1, hence a = 1 or —1. Therefore f(X) =X +bor —X +b = —(X —b). From this we
conclude that any polynomial can be written uniquely as a polynomial in X — ¢, for any integer c.

Question 2: Let I, J be ideals in R such that I 4+ J = R.

Prove that : a) INJ = IJ. b) R/IJ is isomorphic to R/I x R/J. Find the idempotents of R/T.J
corresponding to this decomposition.

Solution: By definition IJ is contained in I N J. Let a belong to I N J. Since I + J = R, there exists
b,c in I, J respectively such that b + ¢ = 1. Then we have a = ab + ac, which is in IJ. So we get that
INnJ=1J.

Define the homomorphism ¢ from R/IJ to R/I x R/J, by the following rule

ola+IJ)=(a+1,a+J).

It is easy to check that it is a well defined homomorphism. Suppose that ¢(a+ IJ) = 0, that means that
a belongs to I N J. Since I N J = IJ, we have a belongs to IJ. So ¢ is injective. Now we have to prove
that ¢ is surjective. So let us take (b+ I,c+ J) in R/I x R/J. We need to produce a € R such that
a+I=b+1,a+J =c+ J. That is we need a such that a — b belongs to I and a — ¢ belongs to J.
Consider z,y in R such that x +y =1. Then ¢(x + IJ) = (0,1 + J) and ¢(y +IJ) = (1 +I,0). Then

dlex+by+I1J)=(cx+by+IT,cx+by+J)=(c+I,c+J)0,1+J)+ b+ 1,0+ J)(1+1,0)

that is equal to
b+1I,c+J).

So ¢ is an isomorphism.

Idempotents of R/IJ corresponds to idempotents in R/I x R/J by this isomorphism.

Question 3: a) Show that an ideal P is a prime ideal in R if and only if R/P is an integral domain.

b) Let f : R — D be a ring homomorphism into an integral domain D. Given two ideals in D, let I, J

be their inverse images under f. Suppose that the product IJ is contained in ker(f). Then prove that
I or J is equal to ker(f). Is it necessary that I.J equals to ker(f).



Solution

a) Let P be a prime ideal. To prove that R/P is an integral domain. So let a + P.b+ P =0 =ab+ P,
that means ab belongs to P, since P is prime we have that a € Por b€ P. Soa+ P =0or b+ P =0.

Suppose that R/P is an integral domain. Let ab belongs to P. Then we have ab+ P = (a+ P)(b+P) =0,
which shows that a € P or b € P. So P is prime.

b) Since D is an integral domain, we observe that ker(f) is a prime ideal. Suppose that I.J is contained
in ker(f). Suppose also that I and J both are not contained in ker(f). So there exists a,b in I, J which
are not in ker(f) such that ab belongs to ker(f). This contradicts that ker(f) is prime. So either I or
J is contained in ker(f). On the other hand ker(f) is contained in I, J (Since {0} is contained in their
images under f). If IJ = Ker(f) = I, then I is contained in I N J, meaning that I C J, which may not
be true.

Question 4: For an element R in the ring R, consider the ideal (rX — 1) in R[X]. Consider the natural
homomorphism ® : R — S = R[X]/I.

a)Show that ker(®) is
{a:m™"a=0,n€N}.

b)Conclude that S = 0 if and only if 7 is nilpotent in R.
¢)Show that @ is an isomorphism if and only if 7 is a unit in R.

Solution:a) First we prove that the ring S = R[X]/I, is the ring R,., that is R localized at r. So define a
homomorphism ¥ : S — R,., given by

[ fQ@yr).
Since in the ring S we have x = 1/r, the map well defined homomorphism. It is easily seen to be a
surjection. We have to prove that ¥ is an injection. So suppose that f(1/r) = 0, that means that

ap+ar(1/r)+ -4+ an(1/r)" =0
which gives us that

rag +r" " tag + -+ a,/r" =0
that is by definition we have

7"5(7“”0,0 + Tn_lal 4+ an) =0

which gives us that a; = 0 for all i. Therefore it will follow that ®(a) = 0, means that a/1 = 0 in the
localization R,.. Which by definition is equivalent to r"*a = 0, for some n € N.

b) We have to prove that S = 0 if r is a nilpotent in R. Suppose that r is a nilpotent. That is ™ = 0 for
some n. Then any a/r™ can be written as r"a/r™*". But 7™ = 0, so we have a/r™ = 0.

On the other hand suppose that S = 0. Then 1/r™ =0 in S, which means that there exists m such that
r™ = 0. So r is a nilpotent.

¢) The map & is an isomorphism means that a/ — a/1 is an isomorphism. Suppose that r is a unit.
Suppose that a/1 = 0, meaning that there exists m such that r™a = 0. Since r is a unit we have that r™
a unit hence @ = 0. So the map is an injection. Let us consider an element a/r", then it there is ar—"
which maps to this element. Hence the map is surjective, hence an isomorphism.

Suppose that ® is an isomorphism. We have to prove that r is a unit. Let a/1 = 1/r, which gives us that
there exists n such that
r"(ra—1)=0



this implies that ra — 1 = 0 (because it is in the kernel of ®), so we have that ra = 1.
Question 5: Let M be a proper ideal in R.

a) Show that the statement ” All elements in R — M are units” is equivalent to the statement ” M is the
unique maximal ideal in R”.

b) Using the knowledge about units in the power series ring Q[[X]], state why the equivalent conditions
holds for this ring.

¢) Show that there is a unique homomorphism Q[[X]] — Q. Is this statement holds for an arbitrary field
F.

Solution: a) Let M be the unique maximal ideal in R. Let a belong to R — M. Then the ideal generated
by a must be contained in a maximal ideal if it is not a unit. But there is only maximal ideal M which
does not contain a. So the ideal generated by a is R. Hence a a unit.

On the other hand suppose that there exists M; a maximal ideal which is not equal to M. Then there
exists a in M7 — M. Since all elements of R — M is a unit, ¢ must be a unit. So we have that M; = R.
Hence M is unique.

b)the ideal generated by x is the unique maximal ideal because any power series which has a non-zero
constant term is a unit. So the above conditions hold in the case of Q[[X]].

¢) Any homomorphism f from Q[[X]] to Q is identity on Q. So it is surjective. The inverse image of the
zero ideal in @, under f is maximal (this is because inverse image of a maximal ideal under a surjective
homomorphism is a maximal ideal). Since the ideal generated by X is the only maximal ideal in Q[[X]],
we have that ker(f) is equal to the ideal generated by X. So we have that the homomorphism f is unique
and determined by the ideal < X >. Here we used the divisibility property of Q, that is for any integer
n we have that n.1/n = 1, which may not hold for arbitrary field F.

Question: a) Let R be a PID and S a UFD, with R contained in S. Let d be the ged of a,b in R, where
a,b are non-zero non-units. Show that d is also the ged of a,b in S.

b) Find a ged of 11 + 7 and 18 — 4 in the ring of Gaussian integers Z][i].

Solution: Since S is a UFD, we have that the factorization of a,b remain unique in R,S. Therefore the
gcd remain unique.

We describe the general procedure for finding the GCD of two Gaussian integers. Let us have a =
a+ib, 3 = c+id two numbers. Then consider a+ib/c+id = a/3 = r +is, where r = ac+bd/c* +d?, s =
ad — be/c® + d?. Find p,q integers in Z such that |r — p|,|¢ — p| are less than or equal to 1/2. Put
0 = (r —p) +i(s —q) and set v = 86, then we get that

a=p(p+iq)+v

since N(#) is less than or equal to 1/2 we have that N(v) is less or equal to N(8)/2. Continue this
process until N(v) = 0.

Question: Given two polynomials f,g in C[X,Y] let I = (f,g), the ideal generated by f,g. Prove that
C[X,Y]/I is a finite dimensional vector space if and only if the GCD (f,g) = 1.

Solution First we prove that if the variety defined by f = g = 0 has finitely many points then GCD of
f,gis 1 and vice versa.



Suppose that the ged is 1. Then the varieties defined by zero locus of f, g must intersect at finitely many
points. Otherwise ged will not be 1.

Now suppose that we have f = 0 intersect ¢ = 0 at finitely many points. Then let gcd be d which is
a polynomial of degree greater or equal than 1. Then we have d = 0 is contained in the intersection
f =g =0, which is impossible since d = 0 defines a curve.

Now we prove that the variety f = g = 0 has finitely many points is equivalent to the fact that dimension
of C[X,Y]/I is finite.

Suppose that f = g = 0 has finitely many points P;,--- , P,. Then by Chinese remainder theorem we
have that
Clx,Y)/I=[[ClX, Y)/I(P)

the right hand side is finite dimensional so we have C[X,Y]/I is finite dimensional.

Suppose that C[X,Y]/I is of finite dimension. Then it is Artinian as a ring hence has Krull dimension
zero, so we get that f = g = 0 consists of finitely many points.

Question 8: Let R be a commutative ring. Describe the kernel of the map ¢ : R[X,Y] — R[T] such that
¢ is identity on R, ¢(X) = TP, ¢(Y) =T9. p,q are relative prime positive integers.

Solution Suppose that ¢(f) =0, that is f(X,Y) =3, a;; X"Y7 is mapped to zero under ¢. That is
Z aiijiJrqj =0.
2

Already we have X7 — YP is in the kernel. We prove that it generates the kernel. So let f belong to the
kernel, then we have

(b(f) =0=ZaiTpi-i-ijT‘U—i—chleYl
i Kl

the above implies that c;; = 0 and a; = b; = 0 except for pi = ¢j = m and in this case we have a; = —b;.
Then we have that f is a linear combination of polynomials of the form X —YP* which are in the ideal
generated by X9 — YP.

Question: a) An element r in a ring R of characteristic 5 satisfies r%°? = 0, then find n > 0 such that
(I+r)"=1.

Solution: Take n = 1000 = 103, since the ring is of characteristic 5 we have (1 + 7")103 =140 = 1,
since 1090 = .

Question: b) Let F' be the two element ring. Find a reducible polynomial in F[X] of smallest possible
degree, which has no roots in F'.

Solution: Take the polynomial to be (X2 + X + 1)2.

Question: ¢) Find all monic polynomials g(X) in Q[X] such that when f is irreducible then so is f(g(x)).
Solution: It implies that g(X) is irreducible and g(X) — ¢ is irreducible for all ¢ rational. In particular
we can choose ¢ = a,,, where a,, is the constant term in g(X). But g(X) — an, is Xg1(X), so it is not
irreducible. So there does not exists any such polynomial with non-zero constant terms. So g has a,, =0

also g(X) is irreducible. That gives us that g(X) = X.

Question: Show that upto isomorphism there are exactly 4 rings of cardinality 4. What about rings of
cardinality 97



Solution:

In a ring of order 4, we have 4.1 = 0, so the characteristic is either 2 or 4. So for all element either 2a = 0
or 4a = 0. If 2a = 0, then the ring is Zy X Zo otherwise it is Z4. Now on each of then there are two
ring operation, one is the natural one and the other one is trivial, i.e (a,b)(c,d) = (ab, cd) or is equal to
0 for Zo X Zs. For Z, we have the natural ring operation and the trivial one. So there are four rings of
cardinality 4.

Same for rings of cardinality 9, either Zs x Zs or Zg, and each having two ring operations.



